很多同学在备考行测时,都会觉得数量关系中的行程问题有点难,解起来比较费时间。那么今天小编就带大家学习一下,如何巧妙利用反比关系,解决数量关系中的行程问题。一起来看看吧。
行程问题基本公式是:路程=速度×时间。根据公式,不难发现,当路程一定时,速度与时间成反比。
那在题目中如何利用反比关系解决题目呢?我们通过以下题目进一步理解和感受。
例1.空军某部队运送救灾物资到灾区。原计划飞机每分钟飞行12千米,由于灾情严重,飞机速度提高到每分钟15千米,结果比原计划提前30分钟到达目的地。请问机场到灾区的距离是多少千米?
A.1600 B.1800 C.2050 D.2250
【解析】B。飞机提速前后的速度比为12∶15=4∶5。根据路程一定,速度与时间成反比,可知提速前后的时间比为5∶4,即提速前时间为5份,提速后时间为4份。提前30分钟到达目的地,对应提速后比提速前少的1份时间,则飞机按原计划飞行需30×5=150分钟,因此机场到灾区的距离是12×150=1800千米,故本题选B。
例2.甲乙两辆车从A地驶往90公里外的B地,两车的速度比为5∶6。甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达B地。问两车的时速相差多少千米/小时?
A.10 B.12 C.12.5 D.15
【解析】D。甲乙两车的速度比为5∶6。路程都是从A到B,根据路程一定,速度与时间成反比,可知甲乙两车所用的时间比为6∶5,即甲车用的时间为6份,乙车用的时间为5份。乙车比甲车晚出发10分钟,且比甲车早2分钟到达,因此全程比甲车少用了12分钟,对应5份时间比6份时间少的1份。因此乙车用时为12×5=60分钟=1小时,可知乙车的速度为90÷1=90千米/小时,甲车的速度为90×=75千米/小时,两车的时速相差90-75=15千米/小时,故本题选D。